KuroNet and Motivating the Kaggle Competition

Pre-Modern Japanese Kuzushiji Character Recognition with Deep Learning

Alex Lamb^{*}, Tarin Clanuwat^{*}, Asanobu Kitamoto

What is the right task for Kuzushiji?

• Stage 1 : predict character centers on each page

• We have the data, but slightly less than text sequence data

• Stage 2: predict a text sequence for each page

- We have the data
- How to extract the sequence for a given page?
- Will it make the model's task too hard?
- Stage 3: predict translation to modern japanese
 - Where to get a dataset with ground truth translations?
 - The right translation is subjective and could be very hard to predict
 - High risk of destroying original meaning and poetry

Object Detection Algorithm

- Supervised task:
 - $\circ \quad \text{Image} \Rightarrow \text{set of objects in the image}$
- Examples of object detection:

What model is good for Kuzushiji?

• Local Patches from a Page are hard to understand in isolation.

U-Net Architecture

• A special type of neural network which combines small-scale and high-level information

KuroNet

- 1. A Residual U-Net takes a page image as input
- 2. Produces a feature at each pixel position
- 3. At every position a binary classifier for characters
- 4. At positions with characters, predict the character

Example of Character Center Prediction

Ground Truth Character Centers

Predicted Character Centers

Mixup Regularizer

• Train on linear interpolations of input images.

+

• Mimics the "bleed through" of the adjacent page - trains model to ignore it.

30%

 - ようふ用ひき	オ社の者や	ひかした和明	へちむうく食い	腰がうのち	有季う風ゆき	客でない	朝	
この腰本なのこうつき以換むとうまか	これで振怒器ですうちなをなるな	問うれもの携着とらくれり何ちのうかる	潮をう~買くありの考えてく	まりある	えまの好を地好のおき あの上ろんと	のいであんし	の略ひちょうべー	

70%

F1-score Evaluation Metric

• What kinds of mistakes can our model make?

	True Character is X	True Character is Y	No Character Present	
Predict X	True Positive	False Positive	False Positive	
Predict Y	False Positive	True Positive	False Positive	
Predict Nothing	False Negative	False Negative	Not counted	

- False positives hurt precision, False negatives hurt recall
- F1-score is a special (harmonic) averaging of precision and recall.
 - Intuitively both precision and recall need to be high for F1-score to be high.

Results

On kaggle dataset: F1-score of 90.2

Green Predicted

Blue Ground Truth

Red Checkmark for Errors

What did we learn from KuroNet?

- An approach based on predicting bounding boxes while looking at a whole page can work well.
- On most documents it is possible to get fairly high accuracy.
- Predicting where characters are can be just as challenging as predicting a character's identity.
- In short: framing the task as *object detection* is reasonable.

Want to learn about or use KuroNet?

- We released KuroNet API online that anyone can use! http://codh.rois.ac.jp/kuronet/
- We published a paper at ICDAR 2019 on KuroNet:
 - o <u>https://arxiv.org/abs/1910.09433</u>

Kaggle Competition

- KuroNet achieved reasonable results but didnt solve the task, motivating us to open a competition hosted on kaggle
- Ran for 3 months:
 - 2652 submissions
 - 338 competitors
 - o 293 teams
 - 15k prize pool (split across top 5)

Kaggle Solutions

- Top F1-score of 0.95.
- 11 teams achieved a better F1-score than KuroNet.
- 50 teams scored above 0.80 (fairly usable systems)

#	∆pub	Team Name	Notebook	Team Members	Score 🕜	Entries	Last
1	_	tascj			0.950	13	25d
2	-	Konstantin Lopuhin			0.950	60	23d
3	_	Kenji		-	0.944	161	23d
4	▲1	YoudaoOCR			0.942	49	23d
5	▼1	See			0.940	42	25d

Brief Overview of Top-5 Solutions

- Tascj used a Cascade-RCNN and a small ensemble
- Konstantin Lopuhin used a Faster-RCNN to segment and a classifier stage
- Kenji used a Faster-RCNN to segment and a classifier stage
- Kolman segmented into text columns and used an LSTM with CTC to recognize characters
- See-- used a modified CenterNet

What did we learn from Kaggle?

- Some existing object detection algorithms work well
 - Faster R-CNN and Cascade R-CNN produced excellent results without any Kuzushiji-specific techniques.
- At the same time, other techniques struggled.
 - YOLO performed quite badly despite substantial effort.
 - "CenterNet" performed well but required more effort and domain-specific tuning to get working.
- Several leading approaches had models that performed detection and classification jointly.

Questions?

- Contacts:
 - Alex Lamb: lambalex@iro.umontreal.ca
 - Tarin Clanuwat: tarin@nii.ac.jp
 - Kitamoto Asanobu: kitamoto@nii.ac.jp
- Feel free to send us an email if you have any questions.